An Embedded System Architecture based on Genetic Algorithms for Mission and Safety Planning with UAV

Jesimar S. Arantes, Márcio S. Arantes, Claudio F. M. Toledo, Onofre T. Júnior, Brian C. Williams

July - 2017

Outline

Methods

5 Conclusions

Introduction

This work addresses

- Path planning for mission execution with UAV:
 - Hybrid Genetic Algorithm for mission (HGA4m) (Arantes et al. 2016).
- Path replanning to land the UAV under critical situation:
 - Multi-Population Genetic Algorithm for security (MPGA4s) (Arantes et al. 2015).
- A combination of two architectures is proposed:
 - MOSA: Mission Oriented Sensor Array:
 - Supervision of mission systems;
 - Architecture create by (Figueira et al. 2013).
 - IFA: In-Flight Awareness:
 - Supervision of safety systems;
 - Architecture create by (Mattei et al. 2013).

- Path planning problem with chance constraints and obstacle avoidance
- Introduced by (Blackmore et al. 2011) and approached in (Arantes et al. 2016)

J. S. Arantes et al. (USP)

- Path replanning problem
- Approached in (Arantes et al. 2015)

- Planning mission with system of safety
- Embedded in the same hardware architecture
- Approached in this work

J. S. Arantes et al. (USP)

Codification, Decodification and Solution

• Codification *u*_t:

Codification, Decodification and Solution

• Codification *u_t*:

• Decodification F_{Ψ} :

 $x_{t+1} = F_{\Psi}(x_t, u_t)$

$$\begin{bmatrix} p_{t+1}^{x} \\ p_{t+1}^{y} \\ v_{t+1} \\ \alpha_{t+1} \end{bmatrix} = \begin{bmatrix} p_{t}^{x} + v_{t} \cdot \cos(\alpha_{t}) \cdot \Delta T + a_{t} \cdot \cos(\alpha_{t}) \cdot (\Delta T)^{2}/2 \\ p_{t}^{y} + v_{t} \cdot \sin(\alpha_{t}) \cdot \Delta T + a_{t} \cdot \sin(\alpha_{t}) \cdot (\Delta T)^{2}/2 \\ v_{t} + a_{t} \cdot \Delta T - F_{t}^{d} \\ \alpha_{t} + \varepsilon_{t} \cdot \Delta T \end{bmatrix}$$

Codification, Decodification and Solution

• Codification *u_t*:

• Decodification F_{Ψ} :

 $x_{t+1} = F_{\Psi}(x_t, u_t)$

$$\begin{bmatrix} p_{t+1}^{x} \\ p_{t+1}^{y} \\ v_{t+1} \\ \alpha_{t+1} \end{bmatrix} = \begin{bmatrix} p_{t}^{x} + v_{t} \cdot \cos(\alpha_{t}) \cdot \Delta T + a_{t} \cdot \cos(\alpha_{t}) \cdot (\Delta T)^{2}/2 \\ p_{t}^{y} + v_{t} \cdot \sin(\alpha_{t}) \cdot \Delta T + a_{t} \cdot \sin(\alpha_{t}) \cdot (\Delta T)^{2}/2 \\ v_{t} + a_{t} \cdot \Delta T - F_{t}^{d} \\ \alpha_{t} + \varepsilon_{t} \cdot \Delta T \end{bmatrix}$$

• Solution *x*_t:

Methods

J. S. Arantes et al. (USP)

GECCO 2017

J. S. Arantes et al. (USP)

J. S. Arantes et al. (USP)

GECCO 2017

July - 2017 10 / 27

J. S. Arantes et al. (USP)

GECCO 2017

July - 2017 11 / 27

J. S. Arantes et al. (USP)

GECCO 2017

July - 2017 12 / 27

J. S. Arantes et al. (USP)

GECCO 2017

July - 2017 13 / 27

J. S. Arantes et al. (USP)

GECCO 2017

July - 2017 14 / 27

J. S. Arantes et al. (USP)

GECCO 2017

July - 2017 15 / 27

J. S. Arantes et al. (USP)

GECCO 2017

July - 2017 16 / 27

J. S. Arantes et al. (USP)

GECCO 2017

July - 2017 17 / 27

J. S. Arantes et al. (USP)

GECCO 2017

July - 2017 18 / 27

Table 1: Settings used in the HGA4m and MPGA4s method.

Parameters	Value HGA4m	Value MPGA4s
number of populations	3	3
population size	3×13	3×13
crossover rate	5	0.5
mutation rate	0.7	0.75
stopping criterion	10 sec	1 sec

HGA4m

- We evaluated 40 artificial maps in total
- Stopping criterion 10 seconds

MPGA4s

- We evaluated 60 artificial maps in total
- We evaluated 4 critical situations
- Stopping criterion 1 second

	PC i5	Intel Edison
Frequency	1.8 GHz	500 MHz
Memory RAM	4 GB	1 GB
Operating System	Linux - Ubuntu	Linux - Yocto

HGA4m Method

HGA4m Method

Figure 2: Path length by instance for path planning

GECCO 2017

MPGA4s Method

MPGA4s Method

Figure 4: Landing sites in both architectures for path replanning.

Video Simulation - SITL to validate routes.

GECCO 2017

- Despite differences in processing, the quality of the solution was similar.
- This indicates the robustness of GAs to find good solutions despite hardware limitations.
- In this way, GA can be embedded and aid the decision making during fully autonomous flights.

🔋 J. d. S. Arantes, M. d. S. Arantes, C. F. M. Toledo, and B. C. Williams.

A multi-population genetic algorithm for uav path re-planning under critical situation.

In Tools with Artificial Intelligence (ICTAI), 2015 IEEE 27th International Conference on, pages 486–493. IEEE, 2015.

M. d. S. Arantes, J. d. S. Arantes, C. F. M. Toledo, and B. C. Williams.

A hybrid multi-population genetic algorithm for uav path planning. In Proceedings of the 2016 on Genetic and Evolutionary Computation Conference, pages 853-860. ACM, 2016.

L. Blackmore, M. Ono, and B. C. Williams. Chance-constrained optimal path planning with obstacles. IEEE Press. 2011.

N. M. Figueira.

Arranjos de sensores orientados à missão para a geração automática de mapas temáticos em VANTs.

Tese de doutorado, Universidade de Sao Paulo (USP), mar 2016. Sao Carlos, SP.

A. L. P. Mattei.

Consciencia situacional em voo de sistemas aereos nao tripulados. Tese de doutorado, Universidade de Sao Paulo (USP), ago 2015. Sao Carlos, SP.

Acknowledgements

Email to contact:

jesimar.arantes@usp.br {marcio, claudio, otj}@icmc.usp.br williams@mit.edu

Thank You!

