A Multi-Population Genetic Algorithm for UAV Path Re-Planning under Critical Situation

Jesimar S. Arantes (USP) Márcio S. Arantes (USP) Claudio F. M. Toledo (USP) Brian C. Williams (MIT)

São Carlos, SP November — 2015

Outline

- Problem Description
- 3 Methods
- 4 Computational Results

Overview

Figure 1: Illustrative scenario for mission planning.

Jesimar S. Arantes (USP)

Overview

Figure 2: Illustrative scenario for mission planning.

Jesimar S. Arantes (USP)

Overview

Figure 3: Illustrative scenario for mission planning.

Jesimar S. Arantes (USP)

Overview

Figure 4: Illustrative scenario for mission planning.

Jesimar S. Arantes (USP)

Overview

Figure 5: Illustrative scenario for mission planning.

Jesimar S. Arantes (USP)

Overview

Figure 6: Illustrative scenario for mission planning.

Jesimar S. Arantes (USP)

Problem Description

Types of Regions and Critical Situation

- Regions
 - **1** No-Fly Zone (ϕ_n)
 - 2 Penalty Region (ϕ_p)
 - 3 Bonus Region (ϕ_b)
 - Remainder Region (ϕ_r)
- Critical Situation
 - Motor Failure (ψ_m)
 - Battery Failure (ψ_b)
 - Aerodynamic Surfaces Failure type 1 (ψ_{e1})
 - Aerodynamic Surfaces Failure type 2 (ψ_{s^2})

Problem Description

Types of Regions and Critical Situation

- Regions
 - **1** No-Fly Zone (ϕ_n)
 - Penalty Region (ϕ_p)
 - 3 Bonus Region (ϕ_b)
 - Remainder Region (ϕ_r)
- Critical Situation
 - 1 Motor Failure (ψ_m)
 - 2 Battery Failure (ψ_b)
 - 3 Aerodynamic Surfaces Failure type 1 (ψ_{s^1})
 - Aerodynamic Surfaces Failure type 2 (ψ_{s^2})

Codification, Decodification and Solution

• Codification *u*_t:

Codification, Decodification and Solution

• Codification *u*_t:

• Decodification F_{Ψ} :

$$x_{t+1} = F_{\Psi}(x_t, u_t)$$

$$\begin{bmatrix} p_{t+1}^{x} \\ p_{t+1}^{y} \\ v_{t+1} \\ \alpha_{t+1} \end{bmatrix} = \begin{bmatrix} p_{t}^{x} + v_{t} \cdot \cos(\alpha_{t}) \cdot \Delta T + a_{t} \cdot \cos(\alpha_{t}) \cdot (\Delta T)^{2}/2 \\ p_{t}^{y} + v_{t} \cdot \sin(\alpha_{t}) \cdot \Delta T + a_{t} \cdot \sin(\alpha_{t}) \cdot (\Delta T)^{2}/2 \\ v_{t} + a_{t} \cdot \Delta T - F_{t}^{d} \\ \alpha_{t} + \varepsilon_{t} \cdot \Delta T \end{bmatrix}$$

Codification, Decodification and Solution

• Codification *u*_t:

• Decodification F_{Ψ} :

$$x_{t+1} = F_{\Psi}(x_t, u_t)$$

$$\begin{bmatrix} p_{t+1}^{x} \\ p_{t+1}^{y} \\ v_{t+1} \\ \alpha_{t+1} \end{bmatrix} = \begin{bmatrix} p_{t}^{x} + v_{t} \cdot \cos(\alpha_{t}) \cdot \Delta T + a_{t} \cdot \cos(\alpha_{t}) \cdot (\Delta T)^{2}/2 \\ p_{t}^{y} + v_{t} \cdot \sin(\alpha_{t}) \cdot \Delta T + a_{t} \cdot \sin(\alpha_{t}) \cdot (\Delta T)^{2}/2 \\ v_{t} + a_{t} \cdot \Delta T - F_{t}^{d} \\ \alpha_{t} + \varepsilon_{t} \cdot \Delta T \end{bmatrix}$$

• Solution *x*_t:

10 / 41

Greedy Heuristic

Greedy Heuristic

Greedy Heuristic

Greedy Heuristic

Jesimar S. Arantes (USP)

Greedy Heuristic

Greedy Heuristic

_		
A	lgorithm 2: Multi-Population Genetic Algorithm.	
1 k 2 3 4 5 6 7 8 9 10 11 12 13 14	reget for $i = 1$ to numPop do for $j = 1$ to numIndividuals do initialize(pop(i).ind(j)); evaluate(pop(i).ind(j)); organize(pop(i)); repeat for $j = 1$ to rateCross × numIndividuals do select(parents); child \leftarrow crossover(parents); child \leftarrow cossover(parents); add(child, pop(i));	select(parents)
15 16 17 18 19 20 21	organize(pop(i)); until converge(pop(i)); for i = 1 to numPop do	

Algorithm 2: Multi-Population Genetic Algorithm. 1 begin 2 repeat 3 for $i = 1$ to numPop do 4 for $j = 1$ to numIndividuals do 5 initialize(pop(i).ind(j)); 6 initialize(pop(i).ind(j)); 7 organize(pop(i)); 8 for $j = 1$ to rateCross × numIndividuals do 9 for $j = 1$ to rateCross × numIndividuals do 10 select(parents); 11 child \leftarrow crossover(parents); 12 child ← crossover(parents); 13 cadd(child); 14 organize(pop(i)); 15 organize(pop(i)); 16 consover(pop(i)); 17 for $i = 1$ to numPop do 18 mutation(child); 19 for $i = 1$ to numPop do 10 mutaticonverge(pop(i)); 16 to numPop do 17 for $i = 1$ to numPop do
i begin repeat repeat initialize($pop(i)$.ind(j)); for $j = 1$ to numIndividuals do initialize($pop(i)$.ind(j)); evaluate($pop(i)$.ind(j)); repeat for $j = 1$ to rateCross × numIndividuals do initialize($pop(i)$.ind(j)); evaluate($pop(i)$.ind(j)); repeat for $j = 1$ to rateCross × numIndividuals do initialize($pop(i)$.ind(j)); select($parents$); initialize($pop(i)$.ind(i)); initialize($pop(i)$.ind(i)); intit converge($pop(i)$.ind(i)); initialize($pop(i)$.ind(i)); intit converge($pop(i)$.ind(i)); initialize($pop(i)$.ind(i)); intit converge($pop(i)$.ind(i); initialize($pop(i)$.ind(i); intit converge($pop(i)$.ind(i); initialize($pop(i)$.ind(i)
 until reach(stoppingCriterion);

Objective Function

$$\begin{array}{l} \text{minimize fitness} = & -C_{\phi_b} \cdot \sum_{i=1}^{|\phi_b|} \left(P(x_K \in Z^i_{\phi_b}) \right) + & C_{\phi_p} \cdot \sum_{i=1}^{|\phi_p|} \left(P(x_K \in Z^i_{\phi_p}) \right) + \\ \\ & C_{\phi_n} \cdot \max(0, 1 - \Delta - P\left(\bigwedge_{t=0}^K \bigwedge_{i=1}^{|\phi_n|} x_t \notin Z^i_{\phi_n} \right) \right) + & \frac{1}{|\varepsilon_{\max}|} \cdot \sum_{t=0}^K ||u_t|| \cdot |\varepsilon_t| + \\ \end{array}$$

$$shortestDist(\overline{x}_{K}, Z_{\phi_{b}}) + <$$

,
$$v_K - v_{min} > 0$$
 , otherwise

 C_{ϕ_b}

$$\left\{ egin{array}{c} C_{\phi_b}\cdot 2^{rac{(\mathcal{K}-\mathcal{T})}{10}} & ,\ \psi=\psi_b \ 0 & , \ ext{otherwise} \end{array}
ight.$$

- Landing on ϕ_b \bigcirc
- Landing on ϕ_p
- Landing and fly on ϕ_n \bigcirc
- ullet Curves of the UAV igodot
- Distance to ϕ_b \bigcirc
- Time violation
- Battery failure

In this work, the following methods were used.

- **GH:** Greedy Heuristic
- MPGA1(-GH): Multi-Population Genetic Algorithm 1
 - Without greedy operator
- MPGA2(+GH): Multi-Population Genetic Algorithm 2
 - With greedy operator

Automatically Generated Maps

Level of Difficulty \bigcirc M_E : a), b) (2) M_N : c), d) Level of Coverage (c) (a) (b) ① $C_{25\%}$: a), c), e) C_{50%}: b), d), f) Legend Colors ϕ^p $\square \phi^n$ $\bigcirc \Box \phi^r$ (f) (d) (e)

Parameters and Settings used in the Experiments

Model	Parameters	Value
Man	Dimension X [m]	1000
wap	Dimension Y [<i>m</i>]	1000
	Initial Position (p_0^x, p_0^y) [m]	(0;0)
	Initial Velocity $(v_0) [m/s]$	24
	Initial Angle (α_0) [°]	90
	Linear Velocity $(v_{min}; v_{max}) [m/s]$	[11; 30]
UAV	Angular Variation $(\varepsilon_{min}; \varepsilon_{max})$ [°/s]	[-3; 3]
	Acceleration $(a_{min}; a_{max}) [m/s^2]$	[0; 2]
	Number of time steps to land (T) [s]	60
	Time Discretization (ΔT) [s]	1
	Probability of failure ($arDelta$)	0.001
	Populations	3
	Individuals/Pop	13
	Individuals Total	39
MPGA	Mutation Rate	0.5
	Crossover Rate	0.75
	Stop Criterion	10000

		GH		MP	GA1(-G	iH)	MPGA2(+GH)			
Ψ	Instance	ϕ_{b}	ϕ_r	Inf.	ϕ_{b}	ϕ_r	Inf.	ϕ_b	ϕ_r	Inf.
ψ_m	M_E and $C_{25\%}$	79	21	0	81	19	0	90	10	0
	M_E and $C_{50\%}$	92	6	2	92	7	1	96	3	1
	M_N and $C_{25\%}$	58	39	3	60	39	1	71	28	1
	M_N and $C_{50\%}$	86	12	2	84	16	0	96	4	0
	M_H and $C_{25\%}$	30	52	18	36	64	0	40	60	0
	M_H and $C_{50\%}$	62	28	10	60	33	7	82	15	3
	Avg	67.8	26.3	5.8	68.8	29.7	1.5	79.2	20.00	0.83

			GH		MP	GA1(-0	GH)	MPC	GA2(+)	GH)
Ψ	Instance	ϕ_b	φr	Inf.	ϕ_b	φr	Inf.	ϕ_{b}	ϕ_r	Inf.
	M_E and $C_{25\%}$	99	0	1	100	0	0	100	0	0
	M_E and $C_{50\%}$	97	0	3	99	0	1	99	0	1
ale	M_N and $C_{25\%}$	93	3	4	94	5	1	99	0	1
ΨЬ	M_N and $C_{50\%}$	98	0	2	99	0	1	100	0	0
	M_H and $C_{25\%}$	67	5	28	73	27	0	94	6	0
	M_H and $C_{50\%}$	83	0	17	68	17	15	95	2	3
	Avg	89.5	1.3	9.2	88.8	8.2	3.0	97.8	1.3	0.8

			GH		MF	PGA1(−0	GH)	MPG	GA2(+	GH)
Ψ	Instance	ϕ_b	ϕ_r	Inf.	ϕ_b	ϕ_r	Inf.	ϕ_b	ϕ_r	Inf.
	M_E and $C_{25\%}$	81	8	11	90	8	2	91	7	2
	M_E and $C_{50\%}$	88	0	12	89	0	11	93	0	7
	M_N and $C_{25\%}$	68	16	16	76	18	6	86	8	6
ψ_{s^1}	M_N and $C_{50\%}$	82	1	17	84	3	13	89	0	11
	M_H and $C_{25\%}$	41	23	36	49	46	5	67	28	5
	M_H and $C_{50\%}$	56	0	44	46	23	31	78	4	18
	Avg	69.3	8.0	22.7	72.3	16.3	11.3	84.0	7.8	8.2

			GH		MP	GA1(-G	iH)	MPC	GA2(+	GH)
Ψ	Instance	ϕ_{b}	ϕ_r	Inf.	ϕ_{b}	ϕ_r	Inf.	ϕ_{b}	ϕ_r	Inf.
	M_E and $C_{25\%}$	90	4	6	94	4	2	99	0	1
	M_E and $C_{50\%}$	90	0	10	95	1	4	95	1	4
	M_N and $C_{25\%}$	70	20	10	79	16	5	92	5	3
ψ_{s^2}	M_N and $C_{50\%}$	87	1	12	83	8	9	94	0	6
	M_H and $C_{25\%}$	40	17	43	62	35	3	74	24	2
	M_H and $C_{50\%}$	61	3	36	57	13	30	76	4	20
	Avg	73.0	7.5	19.5	78.3	12.8	8.8	88.3	5.7	6.0
	Avg Final	74.9	10.8	14.3	77.1	16.7	6.2	87.3	8.7	4.0

Time (Sec)									
GH MPGA1 MPGA2									
0.07	1.017	0.874							

Experiments: Example of Routes

Figure 7: Routes determined by the planner MPGA2(+GH) in a map M_N with coverage $C_{25\%}$: (a) ψ_m . (b) ψ_b .

Experiments: Example of Routes

Figure 8: Routes determined by the planner MPGA2(+GH) in a map M_N with coverage $C_{25\%}$: (c) ψ_{s^1} . (d) ψ_{s^2} .

Experiments: Example of Routes

Figure 9: (a), (b) FG simulation with winds 10 and 50 knots. Wind direction: west.

Video FlightGear Simulator

Figure 10: Video FlightGear Simulator.

Questions send email to:

jesimar.arantes@usp.br marcio, claudio@icmc.usp.br williams@mit.edu

Thank You!